import pandas as pd
import os
stats = pd.read_csv('D:\\OneDrive - office365hubs.com\\.Python for data science\\Demographic-Data.csv')
stats.columns = ['CountryName','CountryCode','BirthRate','InternetUsers','IncomeGroup']
stats.head()
| CountryName | CountryCode | BirthRate | InternetUsers | IncomeGroup | |
|---|---|---|---|---|---|
| 0 | Aruba | ABW | 10.244 | 78.9 | High income |
| 1 | Afghanistan | AFG | 35.253 | 5.9 | Low income |
| 2 | Angola | AGO | 45.985 | 19.1 | Upper middle income |
| 3 | Albania | ALB | 12.877 | 57.2 | Upper middle income |
| 4 | United Arab Emirates | ARE | 11.044 | 88.0 | High income |
stats[['CountryCode','BirthRate']].head()
| CountryCode | BirthRate | |
|---|---|---|
| 0 | ABW | 10.244 |
| 1 | AFG | 35.253 |
| 2 | AGO | 45.985 |
| 3 | ALB | 12.877 |
| 4 | ARE | 11.044 |
stats[['CountryCode','BirthRate','InternetUsers']].head()
| CountryCode | BirthRate | InternetUsers | |
|---|---|---|---|
| 0 | ABW | 10.244 | 78.9 |
| 1 | AFG | 35.253 | 5.9 |
| 2 | AGO | 45.985 | 19.1 |
| 3 | ALB | 12.877 | 57.2 |
| 4 | ARE | 11.044 | 88.0 |
stats[['CountryCode','BirthRate','InternetUsers']][4:8].head()
| CountryCode | BirthRate | InternetUsers | |
|---|---|---|---|
| 4 | ARE | 11.044 | 88.0 |
| 5 | ARG | 17.716 | 59.9 |
| 6 | ARM | 13.308 | 41.9 |
| 7 | ATG | 16.447 | 63.4 |
#mathematical operations:
result = stats.BirthRate * stats.InternetUsers
result.head()
0 808.2516
1 207.9927
2 878.3135
3 736.5644
4 971.8720
dtype: float64
# Add a column to your data frame
stats['MyCalc'] = stats.BirthRate * stats.InternetUsers
stats.head()
| CountryName | CountryCode | BirthRate | InternetUsers | IncomeGroup | MyCalc | |
|---|---|---|---|---|---|---|
| 0 | Aruba | ABW | 10.244 | 78.9 | High income | 808.2516 |
| 1 | Afghanistan | AFG | 35.253 | 5.9 | Low income | 207.9927 |
| 2 | Angola | AGO | 45.985 | 19.1 | Upper middle income | 878.3135 |
| 3 | Albania | ALB | 12.877 | 57.2 | Upper middle income | 736.5644 |
| 4 | United Arab Emirates | ARE | 11.044 | 88.0 | High income | 971.8720 |
#Removing a column
stats.head()
| CountryName | CountryCode | BirthRate | InternetUsers | IncomeGroup | MyCalc | |
|---|---|---|---|---|---|---|
| 0 | Aruba | ABW | 10.244 | 78.9 | High income | 808.2516 |
| 1 | Afghanistan | AFG | 35.253 | 5.9 | Low income | 207.9927 |
| 2 | Angola | AGO | 45.985 | 19.1 | Upper middle income | 878.3135 |
| 3 | Albania | ALB | 12.877 | 57.2 | Upper middle income | 736.5644 |
| 4 | United Arab Emirates | ARE | 11.044 | 88.0 | High income | 971.8720 |
stats.drop('MyCalc', 1)
| CountryName | CountryCode | BirthRate | InternetUsers | IncomeGroup | |
|---|---|---|---|---|---|
| 0 | Aruba | ABW | 10.244 | 78.9 | High income |
| 1 | Afghanistan | AFG | 35.253 | 5.9 | Low income |
| 2 | Angola | AGO | 45.985 | 19.1 | Upper middle income |
| 3 | Albania | ALB | 12.877 | 57.2 | Upper middle income |
| 4 | United Arab Emirates | ARE | 11.044 | 88.0 | High income |
| ... | ... | ... | ... | ... | ... |
| 190 | Yemen, Rep. | YEM | 32.947 | 20.0 | Lower middle income |
| 191 | South Africa | ZAF | 20.850 | 46.5 | Upper middle income |
| 192 | Congo, Dem. Rep. | COD | 42.394 | 2.2 | Low income |
| 193 | Zambia | ZMB | 40.471 | 15.4 | Lower middle income |
| 194 | Zimbabwe | ZWE | 35.715 | 18.5 | Low income |
195 rows × 5 columns
stats = stats.drop('MyCalc', 1)
stats
| CountryName | CountryCode | BirthRate | InternetUsers | IncomeGroup | |
|---|---|---|---|---|---|
| 0 | Aruba | ABW | 10.244 | 78.9 | High income |
| 1 | Afghanistan | AFG | 35.253 | 5.9 | Low income |
| 2 | Angola | AGO | 45.985 | 19.1 | Upper middle income |
| 3 | Albania | ALB | 12.877 | 57.2 | Upper middle income |
| 4 | United Arab Emirates | ARE | 11.044 | 88.0 | High income |
| ... | ... | ... | ... | ... | ... |
| 190 | Yemen, Rep. | YEM | 32.947 | 20.0 | Lower middle income |
| 191 | South Africa | ZAF | 20.850 | 46.5 | Upper middle income |
| 192 | Congo, Dem. Rep. | COD | 42.394 | 2.2 | Low income |
| 193 | Zambia | ZMB | 40.471 | 15.4 | Lower middle income |
| 194 | Zimbabwe | ZWE | 35.715 | 18.5 | Low income |
195 rows × 5 columns